

Modbus Poll user manual

Table of Contents

	1. Modbus Poll
	1.1. System requirements for Modbus Poll
	1.2. End User License Agreement

	2. Modbus Poll Features
	2.1. Connections
	2.2. Supported Modbus Functions
	2.3. Data logging
	2.4. Display formats
	2.5. Miscellaneous features

	3. Overview
	3.1. Help from anywhere
	3.2. Name cells
	3.3. Value cells
	3.4. Change font
	3.5. Conditional colors
	3.6. Scaling
	3.7. Real time charting
	3.8. Address Scan
	3.9. Open a new window

	4. Connection dialog
	4.1. Connection
	4.2. Serial Settings
	4.3. Remote Server
	4.4. Advanced settings

	5. Read/Write definition
	5.1. Slave ID
	5.2. Function code
	5.3. Address
	5.4. Scanrate
	5.5. Read/Write Disabled
	5.6. Hide name columns
	5.7. Address in cell
	5.8. PLC Addresses (Base 1)
	5.9. Enron/Daniel Mode
	5.10. Rows

	6. Real time Charting
	6.1. Settings
	6.2. Zoom function
	6.3. Pan function
	6.4. Link data to the chart series
	6.5. Export series

	7. Address Scan
	7.1. Export Address Scan

	8. Display formats
	8.1. Native Modbus registers
	8.2. 32-bit signed integer
	8.3. 32-bit unsigned integer
	8.4. 64-bit signed integer
	8.5. 64-bit unsigned integer
	8.6. 32-bit floating
	8.7. 64-bit double

	9. Save/Open Workspace
	10. Export to csv
	11. Export to Modbus Slave
	12. Test center
	12.1. Comments
	12.2. ASCII Example
	12.3. TCP/IP Example
	12.4. Test center string file
	12.5. Copy

	13. Modbus Data logging
	13.1. Text file
	13.2. Microsoft Excel

	14. Communication traffic
	15. OLE/Automation
	15.1. Excel example
	15.2. Python example
	15.3. Connection Functions/Properties
	15.4. Read Functions
	15.5. Automation Write Functions
	15.6. Various Functions
	15.7. Automation data properties
	15.8. Write Functions (Create a data window)

	16. Exception and error messages
	16.1. Modbus Exception Codes
	16.2. Modbus Poll error messages

Witte Software® https://www.modbustools.com

2024-04-02

1. Modbus Poll

Modbus Poll is an easy to use Modbus master simulator developed for many purposes. Among others:

	
Designers of Modbus slave devices for quick and easy testing of protocol interface

	
Automation engineers that need to test Modbus devices or networks on site

	
Service engineers that want to read out and/or change specific service data from a device

	
Change Modbus registers in a slave device

	
Log data from Modbus devices

	
Troubleshooting and compliance testing

1.1. System requirements for Modbus Poll

	Hardware requirements
	
Processor; 1 GHz or faster recommended

1 GB RAM

5 MB of available hard drive space

1024 x 768 display resolution

	OS requirements
	
All Windows versions from Windows 7 to Windows 11 are supported.

Modbus Poll version 7 runs on Windows XP.

1.1.1. Silent install

Silent install require no user intervention and have no user interface. The user doesn’t see any dialog and isn’t asked any questions.

Use the command line /S switch.

1.2. End User License Agreement

You should carefully read the following terms and conditions before using Modbus Poll.
Unless you have a different license agreement signed by Witte Software, your use of this software
indicates your acceptance of this license agreement and warranty.
If you do not accept these terms you must cease using this software immediately.

Copyright.

Modbus Poll ("The Software") is copyright 2002-2023 by Witte Software, all rights reserved.

Evaluation and Registration.

This is not free software. You are hereby licensed to use the Software for evaluation purposes without
charge for a period of 30 days.

If you use the Software after the 30 day evaluation period a registration fee is required.

Unregistered use of the Software after the 30-day evaluation period is in violation of U.S. and
international copyright laws.

One registered copy of the Software may either be used by a single person who uses the software
personally on one or more computers, or installed on a single computer used by multiple people, but not both.

For information on order and pricing, please visit https://www.modbustools.com/order.html

Modbus Poll licenses are perpetual. Once you buy a license to a specific major version, and as long
as you abide by the license agreement, you can use that version forever with no additional cost.

Distribution.

Provided that you do not include your License Key you are hereby licensed to make copies of the Software;
give exact copies of the original to anyone; and distribute the Software in its unmodified form via
electronic means. You are specifically prohibited from charging for any such copies.

LIMITED WARRANTY.

THE SOFTWARE IS PROVIDED AS IS AND WITTE SOFTWARE DISCLAIMS ALL WARRANTIES
RELATING TO THIS SOFTWARE, WHETHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

LIMITATION ON DAMAGES.

NEITHER WITTE SOFTWARE NOR ANYONE INVOLVED IN THE CREATION, PRODUCTION, OR DELIVERY OF THIS SOFTWARE SHALL
BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE SUCH SOFTWARE EVEN IF WITTE SOFTWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR
CLAIMS. IN NO EVENT SHALL WITTE SOFTWARE’S LIABILITY FOR ANY DAMAGES EXCEED THE PRICE PAID FOR THE
LICENSE TO USE THE SOFTWARE, REGARDLESS OF THE FORM OF CLAIM. THE PERSON USING THE SOFTWARE BEARS
ALL RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE.

2. Modbus Poll Features

2.1. Connections

Modbus Poll read/write data from devices using:

	
Modbus RTU or ASCII on RS232 or RS485 networks. (USB/RS232/485 Converter)

	
Modbus TCP/IP

	
Modbus Over TCP/IP. (Modbus RTU/ASCII encapsulated in a TCP packet)

	
Modbus UDP/IP

	
Modbus Over UDP/IP. (Modbus RTU/ASCII encapsulated in a UDP packet)

2.2. Supported Modbus Functions

	
01 (0x01) Read Coils

	
02 (0x02) Read Discrete Inputs

	
03 (0x03) Read Holding Registers

	
04 (0x04) Read Input Registers

	
05 (0x05) Write Single Coil

	
06 (0x06) Write Single Register

	
08 (0x08) Diagnostics (Serial Line only)

	
11 (0x0B) Get Comm Event Counter (Serial Line only)

	
15 (0x0F) Write Multiple Coils

	
16 (0x10) Write Multiple Registers

	
17 (0x11) Report Server ID (Serial Line only)

	
22 (0x16) Mask Write Register

	
23 (0x17) Read/Write Multiple Registers

	
43 / 14 (0x2B / 0x0E) Read Device Identification

2.3. Data logging

	
Log data to a text file

	
Log data direct into Excel

2.4. Display formats

Each cell can be individual formatted.

	
Signed 16-bit register

	
Unsigned 16-bit register

	
Hex

	
Binary

	
32-bit signed integer with any word/byte order

	
32-bit unsigned integer with any word/byte order

	
64-bit signed integer with any word/byte order

	
64-bit unsigned integer with any word/byte order

	
32-bit float with any word/byte order

	
64-bit double float with any word/byte order

2.5. Miscellaneous features

	
OLE/Automation for interfacing with Excel VBA, Python etc.

	
Monitoring of data traffic

	
Print and print preview

	
Font selection

	
Conditional colors

	
Scaling

	
Real time charting

	
Save/Open workspace

	
Address Scan

3. Overview

Modbus Poll uses a multiple document interface. That means several windows can be opened.
Each one with different data contents from different slave devices at the same time.

[image: Modbus Poll Master simulator]

This picture shows two open windows. One reading 10 Holding registers from slave id 1 and
another reading 10 Holding registers from slave id 2.

3.1. Help from anywhere

Press F1 and get context sensitive help on a topic associated with the current selected item.

SHIFT + F1 invokes a special "help mode" in which the cursor turns into a help cursor (arrow + question mark).
The user can then select a visible object in the user interface, such as a menu item, toolbar button, or window.
This opens help on a topic that describes the selected item.

3.2. Name cells

Here you can type any text for designation of the value cells. You can also copy/paste text from Excel cells.

3.3. Value cells

Show the data values of the Modbus registers. If you double click a value cell a dialog box lets you
write a new value to the slave device. Typing a number in a value cell shows the dialog as well.
It is possible to select the used Modbus function used to write the value.

The check box "Close dialog on Response ok" is used to automatically close the dialog box when a value is successfully sent.
This is convenient when a lot of values are to be changed. In that way it is fast to select a new cell and then type a new value again.

[image: Write single register]

3.4. Change font

	To change the font you have 2 options
	

	
Select the cells to be changed and then right click.

	
Select the cells to be changed and then Menu→Display→Font.

[image: Font selection]

3.5. Conditional colors

Conditional colors help you visually show values in specific ranges.

	3 color options
	

	
Default color: This color is used if none of the conditional colors evaluates to true.

	
Rule 1: This color selection is used if the expression evaluates to true. Rule 1 has precedence over rule 2.

	
Rule 2: This color selection is used if the expression evaluates to true.

	7 Comparison operators
	

	
not used

	
equal to

	
greater than

	
less than

	
greater than or equal to

	
less than or equal to

	
and

The "and" operator cannot be used when the data type is of float or 32 bit long type.
The condition value is entered as a hex number if "and" is selected.
It evaluates to true if any of the bits in both the cell and the condition value is 1.

3.5.1. Color example

Green color if the cell value is greater than 0 and red if less than 0.

[image: Cell colors]

3.6. Scaling

Scaling helps you scale raw values to human readable values. Scaling works only for signed and unsigned 16/32 bit integers.

[image: Scaling]

	(X1,Y1) and (X2,Y2)
	
A line passing through the two points (X1,Y1) and (X2,Y2)

\$Slope = m = (Y2 - Y1) / (X2 - X1)\$

	Line equation
	
\$Y = m * (X - X1) + Y1\$

	Precision
	
Number of digits after the decimal point.

	Enable
	
Must be enabled to scale the value from the Modbus server/slave. Scaling is automatically disabled if other
than a 16/32 bit integer display format is selected.

3.7. Real time charting

The chart can plot 12 series in real time with up to 100000 points in each series.

3.8. Address Scan

Scan an address range for a list of all valid addresses in a device.

3.9. Open a new window

To open another window you have 3 options:

	
Press CTRL+N

	
Select new in the file menu

	
Press [image: New window] on the toolbar

4. Connection dialog

To open the connection dialog you have 2 options:

	
Press F3

	
Select connect from the connection menu

[image: Modbus Connection setup"]

4.1. Connection

There are 5 different connection types:

	
Serial:

Modbus over serial line. RS232 or RS485. A USB serial converter can be used.

	
Modbus TCP/IP:

Select TCP/IP if you want to communicate with a MODBUS TCP/IP network. In this case, slave ID is the
same as the Unit ID used in MODBUS TCP/IP.

The port number is default 502.

If the connection fails, try to ping your device at the command prompt. If the ping command fails, the Modbus Poll also fails.

	
Modbus UDP/IP:

Select UDP/IP if you want to communicate with a MODBUS UDP/IP network. This is the same as Modbus
TCP/IP but the connection less UDP protocol is used instead.

	
Modbus RTU/ASCII Over TCP/IP:

This is a RTU or ASCII message sent over a TCP/IP network instead of serial lines.

	
Modbus RTU/ASCII Over UDP/IP:

This is a RTU or ASCII message sent over a UDP/IP network instead of serial lines.

	

	

Connection type 3-5 is not standard Modbus as specified by
www.modbus.org but they are added for convenience.

Depending on your selection some other settings will be grayed.

4.2. Serial Settings

Use these parameters to set serial port settings. They are only available if the connection type is "Serial Port".

	Mode
	
Use this option to select RTU or ASCII mode. Default RTU.

	Response timeout
	
Specifies the length of time that Modbus Poll should wait for a response from a slave device before giving up. Default is 1000ms.

	Min delay between polls
	
This setting ensures a minimum delay until the next request is transmitted no matter the scan rate.
The resolution of this setting is approximately 15ms. It’s possible on some computers to obtain better resolution but not all.

	

	

	
If you set this value lower than 20ms the 3.5 char time gap between response and a new request can’t be guaranteed.
This is because the Windows scheduler switches tasks every 10 - 20ms.

	
If you Poll several slaves in a serial RS485 network you should NOT set the value lower than 20ms. This is to ensure the 3.5 char time gap.

	
In a TCP/IP network less than 20ms is ok.

	
Serial connection to only one slave device less than 20ms is ok.

	User Baud Rate
	
Specify a custom baud rate if none of the default baud rates are useful.

4.3. Remote Server

Remote server settings are only available when using an Ethernet connection.

	IP Address
	
Servers IP address. Default is localhost 127.0.0.1

	Port
	
Server port number. Default 502

	Connect Timeout
	
Max time to use to establish a connection. Default 1000

4.4. Advanced settings

	RTS Toggle
	
RTS Toggle specifies that the RTS line will be high if bytes are available for transmission. After all buffered bytes have been sent, the RTS line will be low.

You can use this to switch direction if you have a 232/485 converter without an automatic direction switch.

	

	
The use of RTS controlled RS232/RS485 converters should be avoided if possible.
It is difficult to determine the exact time when to switch off the transmitter with non real-time
operating systems like Windows and Linux. If it is switched off too early characters might still sit
in the FIFO or the transmit register of the UART and these characters will be lost. Hence the slave
will not recognize the message. On the other hand if it is switched off too late then the slave’s message
is corrupted and the master will not recognize the message.

	DSR
	
DSR specifies whether the DSR (data-set-ready) signal is monitored for output flow control. If this member is TRUE and DSR is turned off, output is suspended until DSR is sent again.

	CTS
	
CTS specifies whether the CTS (clear-to-send) signal is monitored for output flow control. If this checkbox is enabled and CTS is turned off, output is suspended until CTS is sent again.

	DTR
	
DTR specifies whether the DTR will be enabled or disabled whenever the port is opened.

	Remove Echo
	
If your device or RS232/RS485 converter echoes the chars just sent.

5. Read/Write definition

Use this command to define the data to be monitored for the active window.

To open the Read/Write Definition dialog you have 3 options:

	
Press F8

	
Select "Read/Write Definition" from the Setup menu

	
Press [image: Definition button] on the toolbar

[image: Read/write definition]

5.1. Slave ID

Range 1 to 255. (MODBUS protocol specifications say 247). The value 0 is also accepted to communicate directly to a MODBUS/TCP or MODBUS/UDP device.

5.2. Function code

You can select 1 of 8 function codes.

5.2.1. Read functions

The data returned by the read functions are displayed on the grid window.

	
01: Read coils (0x)

	
02: Read discrete inputs (1x)

	
03: Read holding registers (4x)

	
04: Read input registers (3x)

5.2.2. Write functions

The write functions write the data displayed on the grid window.

	
05: Write single coil (Writes to Coil status)

	
06: Write single register (Writes to Holding registers)

	
15: Write multiple coils (Writes to Coils)

	
16: Write multiple registers (Writes to Holding registers)

5.3. Address

Addresses in the Modbus protocol are confusing! Some protocol specifications use the protocol/message
address and others use device addressing.

5.3.1. Protocol/message address

Some protocol specifications use the protocol/message address counting from 0 to 65535 along with a
function code. This is also what the new Modbus specifications use. This is the address inside the
message sent on the wire.

Modbus Poll use protocol/message address counting from 0 to 65535.

5.3.2. Device address

Some protocol specifications use device address/registers. Registers counts from 1.
The first digit describes the function to be used. That means the device address 40101
is identified by address 100. The "4" means Holding registers and 4x registers counts from 1.
Therefore the ‘4XXXX’ reference is implicit.
And even more confusing: 4x means function code 03 and 3x means function code 04!

5.3.3. 5 digits vs. 6 digits addressing

The address format 4x counts from 40001 to 49999. The next address is not 50000.
In the old days 9999 addresses was enough. There are cases where 9999 is not enough.
Then a zero is added. 40101 becomes 400101 and so on. This is called 6 digits addressing or extended addressing.

This is not a problem with Modbus Poll. 410001 become 10000. The "4" is thrown away and the rest 10001
is decremented by 1 as we count from 0 instead of 1.

5.3.4. Address examples

These examples show how to set up Modbus Poll if a specification uses device addresses.

Read Holding Registers

You want to read 20 registers from device address 40011 from slave ID 2 every 1000ms. From the "4" we know this is function 03 "Read Holding Registers".

	
Slave ID = 2

	
Function = "03 Read Holding Registers (4x)"

	
Address = 10 (11 minus 1)

	
Quantity = 20

	
Scanrate = 1000

Read Discrete Inputs

You want to read 1000 coils from address 110201 from slave ID 5 every 500ms. From the "1" we know this is function 02 "Read Discrete Inputs"

	
Slave ID = 5

	
Function = "02 Read Discrete Inputs (1x)"

	
Address = 10200 (10201 - 1)

	
Quantity = 1000

	
Scanrate = 500

5.4. Scanrate

The scan rate can be set from 0 to 3600000ms. Note that setting the scan rate lower than the transaction
time does not make sense. If a serial connection at 9600baud is used and 125 registers are requested
the transaction time is roughly 8 + 2 + 250 + 2 = 262ms + the gap (>3.5 char time) between the request
and the response. In this case setting the scan rate at e.g. 100ms does not make sense as the transaction time
is at least 262ms + delay in the slave (gap) + min time between polls. (Set in the connection dialog F3).

5.5. Read/Write Disabled

The "Read/Write Disabled" checkbox can be used to temporary enable or disable the communication for
this window. A text (Disabled) is then shown along with the Tx and Error counters.

[image: Read/Write disabled]

If "Read/Write" is disabled you can make single requests with the "Read/Write once" button or press F6.

[image: Read/Write once button]

"Read/Write once" button

5.5.1. Disable on error

Disable Read/Write in case of error.

5.6. Hide name columns

Hide all name columns. This is convenient to make more space if they are not used.

5.7. Address in cell

If enabled, the address is also shown in the value cell like: 2000 = 00000

[image: Address in cell]

5.8. PLC Addresses (Base 1)

This option will show the addresses as device addresses.

[image: PLC address]

5.9. Enron/Daniel Mode

Enron or Enron/Daniels Modbus is Standard Modbus with a few "Vendor Extensions".
The exact impact of these extensions is context dependent, but most common Modbus commands work as expected.
There are some custom vendor-defined functions available - but few users expect or use them.
The largest impact has to do with how 32-bit data values are read/written.

Enron-Modbus defines two special 4x holding register ranges:

	
4x5001 to 4x5999 are assumed 32-bit long integers (4-bytes per register).

	
4x7001 to 4x7999 are assumed 32-bit floating points (4-bytes per register).

Dealing with 32-bit values in Modbus is NOT unique to Enron-MB. However, Enron-MB takes
the debatable step of returning 4-bytes per register instead of the 2-bytes implied by
the term "holding register" in the Modbus specification. This means a poll of registers
4x5001 and 4x5002 in Enron-Modbus returns 8-bytes or two 32-bit integers, whereas Standard
Modbus would only return 4-bytes or one 32-bit integer treated as two 16-bit integers.
In addition, polling register 4x5010 in Enron-MB returns the tenth 32-bit long integer,
whereas Standard Modbus would consider this 1/2 of the fifth 32-bit long integer in this range.

5.10. Rows

Specify the number of rows in the grid you prefer.

6. Real time Charting

Use this command to plot up to 12 data series in a chart in real time.

The real time chart is high speed and capable of drawing a new line as fast as new data is received.

	

	
All chart settings are saved in the workspace file. Save/Open Workspace

To open the Real time charting dialog you have 2 options:

	
Press Alt + R

	
Select "Real time Charting" from the Display menu

[image: Real time charting]

The X-Axis displays the number of seconds since the chart was started.

When the points reach the end of the chart there are 3 options:

	
Stop at end: The charting stops.

	
Restart at end: The charting starts all over again.

	
Continue: It continues until it reaches the max number of points or stop is pressed.

6.1. Settings

By default all 12 series are linked to the left Y-Axis. Check
the "Right Y-Axis" check box if you want to link a series to the right Y-Axis.

	Specify
	

	
Colors

	
Right Y-Axis

	
Title. If title is empty it is initialized with the name from the reading window

	
Offset

	Show
	

	
File name

	
Address

The offset is useful to align data points on the same Y-Axis. For example, data points that are either 0 or 1
can be offset so they are not drawn on top of each other.

[image: Series settings]

6.2. Zoom function

Zooming in on the chart can be useful if you want to see more details.
The zoom is controlled with the left mouse button. To zoom a specific part of the chart, simply left-click
on the chart (this will be the upper-left corner of the zoomed rectangle) and drag to the bottom-right.
A rectangle will appear. As soon as you release the mouse button, the axes will automatically
adjust themselves to the region you have selected.

If you left-click on the chart (like for starting a zoom) but if you move to the top-left corner instead,
all the modifications done with the zoom and pan features will be canceled
(the chart will be in the state it was before the manipulations with the pan and zoom).

6.3. Pan function

To pan the control, right-click somewhere on the control and move the mouse. The point under the mouse
will follow the movement of the mouse.

6.4. Link data to the chart series

The chart doesn’t know what data to use unless you link a Modbus data cell to one of the 12 series.
To do this, select a value cell and choose "Link to chart" from Menu→Display.

[image: Link to chart]

6.5. Export series

Save series data to disk or copy to clipboard. Paste the data direct in Excel for further processing.

The file is given a .csv extension despite the use of a non-comma field separator.

Delimiters: Select the character that separates values in your text file. Use tab delimiter when copy/paste to Excel.

	Furthermore some additional information is given.
	

	
Number of points

	
Max point value

	
Min point value

	
Average point value

[image: save/copy series]

7. Address Scan

Scan an address range for a list of all valid addresses in a device. Addresses are read one by one and the read result is shown in a list.

	

	
Scanning all 65535 addresses takes some time depending on connection type, server device etc.

[image: Modbus address scan]

7.1. Export Address Scan

Save Address Scan data to disk or copy to clipboard. Paste the data direct in Excel for further processing.

The file is given a .csv extension despite the use of a non-comma field separator.

Delimiters: Select the character that separates values in your text file. Use tab delimiter when copy/paste to Excel.

8. Display formats

Mark the cells to be formatted. Select one of the 28 display formats from the display menu.

8.1. Native Modbus registers

The 16-bit Modbus registers can be displayed in 4 different modes.

	
Signed

	
Unsigned

	
Hex

	
ASCII - Hex

	
Binary

8.2. 32-bit signed integer

This combines 2 16-bit Modbus registers. It can be displayed in 4 different word/byte orders.

	
Signed integer Big-endian

	
Signed integer Little-endian

	
Signed integer Big-endian byte swap

	
Signed integer Little-endian byte swap

	Example
	
Byte Order: AB CD (Big-endian)

The decimal number 123456789 or in hexadecimal 07 5B CD 15

Order as they come over the wire in a Modbus message: 07 5B CD 15

8.3. 32-bit unsigned integer

This combines 2 16-bit Modbus registers. It can be displayed in 4 different word/byte orders.

	
Unsigned integer Big-endian

	
Unsigned integer Little-endian

	
Unsigned integer Big-endian byte swap

	
Unsigned integer Little-endian byte swap

	Example
	
Byte Order: AB CD (Big-endian)

The decimal number 123456789 or in hexadecimal 07 5B CD 15

Order as they come over the wire in a Modbus message: 07 5B CD 15

8.4. 64-bit signed integer

This combines 4 16-bit Modbus registers. It can be displayed in 4 different word/byte orders.

	
Signed integer Big-endian

	
Signed integer Little-endian

	
Signed integer Big-endian byte swap

	
Signed integer Little-endian byte swap

	Example
	
Byte Order: AB CD EF GH (Big-endian)

The decimal number -1,234,567,890,123,456,789 or in hexadecimal EE DD EF 0B 82 16 7E EB

Order as they come over the wire in a Modbus message: EE DD EF 0B 82 16 7E EB

8.5. 64-bit unsigned integer

This combines 4 16-bit Modbus registers. It can be displayed in 4 different word/byte orders.

	
Unsigned integer Big-endian

	
Unsigned integer Little-endian

	
Unsigned integer Big-endian byte swap

	
Unsigned integer Little-endian byte swap

	Example
	
Byte Order: AB CD EF GH (Big-endian)

The decimal number 1,234,567,890,123,456,789 or in hexadecimal 11 22 10 F4 7D E9 81 15

Order as they come over the wire in a Modbus message: 11 22 10 F4 7D E9 81 15

8.6. 32-bit floating

This combines 2 16-bit Modbus registers. It can be displayed in 4 different word/byte orders.

	
Float Big-endian

	
Float Little-endian

	
Float Big-endian byte swap

	
Float Little-endian byte swap

	Example
	
Byte Order: AB CD (Big-endian)

The floating point number 123456.00 or in hexadecimal 47 F1 20 00

Order as they come over the wire in a Modbus message: 47 F1 20 00

8.7. 64-bit double

This combines 4 16-bit Modbus registers. It can be displayed in 4 different word/byte orders.

	
Double Big-endian

	
Double Little-endian

	
Double Big-endian byte swap

	
Double Little-endian byte swap

	Example
	
Byte Order: AB CD EF GH (Big-endian)

The floating point number 123456789.00 or in hexadecimal 41 9D 6F 34 54 00 00 00

Order as they come over the wire in a Modbus message: 41 9D 6F 34 54 00 00 00

9. Save/Open Workspace

If you open many related Modbus windows it is convenient to save a snapshot of the current layout of all open and arranged Modbus Windows in one workspace.

A workspace (*mbw) is a file that contains display information and file names of all open windows.
Not the actual contents. To do this, go to File→Save Workspace.

The Connection and Chart settings are stored in the Workspace file.

When you open a workspace file, Modbus Poll opens all Modbus Windows and displays them in the layout that you saved.

10. Export to csv

Export names and values to a Comma, Semicolon or Tab Separated Values File.

	Select from the file dialog
	

	
Comma Separated Values file (*.csv)

"Temperature","19.7"

	
Semicolon Separated Values file (*.csv)

"Temperature";"19.7"

	
Tab Separated Values file (*.txt)

Temperature	 19.7

Depending on your system, comma or period is used to separate decimals.

11. Export to Modbus Slave

Export names, values and formatting to a Modbus Slave file. *.mbs

Modbus Slave version 7.4.0 or newer is required to open the file.

12. Test center

The purpose of this test dialog is to help MODBUS slave device developers to test the device with any
string of their own composition.

The list box displays the transmitted data as well as the received data.

You can have several test strings in the pull down list box. When you have entered a string then press
the "Add to List" button then the string is added to the list.

The selected string is sent when the "Send" button is pressed.

	Open list
	
Rest test strings from a file.

	Save list
	
Store the test strings to a file.

	Clear
	
Clear the test list.

	Add to list
	
Add the current test string to the list.

	Add Check
	
Add a CRC or LRC to the end of the input string.

When using the test center you may want to disable communication from other windows.
Check the "Read/Write disable" check box in "Read/Write Definition" dialog. Setup→Read/Write Definition.

12.1. Comments

Comments start with two forward slashes (//).

Any text between // and the end of the line is ignored.

12.2. ASCII Example

String in the combo box:

3A 30 31 30 33 30 30 30 30 30 30 30 41

The transmitted string if LRC is added

3A 30 31 30 33 30 30 30 30 30 30 30 41 46 32 0D 0A

A CR LF pair is also added.

12.3. TCP/IP Example

Read 10 holding registers.

00 00 00 00 00 06 01 03 00 00 00 0A

The first 6 bytes are the TCP/IP header.

12.4. Test center string file

With a text editor such as notepad or similar you can prepare strings to be used in the test.

The first line in the file must be the string "TestCenter". This is how Modbus Poll knows that the file is the correct format. Press "Open list" to open the prepared text file.

12.4.1. Content of a string list

TestCenter
3A 30 31 30 33 30 30 30 30 30 30 30 41
3A 30 32 30 33 30 30 30 30 30 30 30 41
3A 30 33 30 33 30 30 30 30 30 30 30 41

12.5. Copy

Use the Copy button to copy selected Tx/Rx strings to the clipboard.

The SHIFT and CTRL keys can be used together with the mouse to select and deselect strings, select groups of strings, and select non-adjacent strings.

	

	
Leave this window open while doing other commands.

13. Modbus Data logging

You can log data to either a text file or direct to Microsoft Excel.

13.1. Text file

Select Log from the setup menu or use shortcut keys: Alt+L

Each Modbus Window logs to its individual text file.

When you want to stop the data logging then select the logging off command on the setup menu.

[image: Modbus data log]

13.1.1. Log Rate

	Each read
	
Write a logline for all Modbus requests. Log frequency as scan rate.

	Select
	
Specify the log rate in seconds. Independent of scan rate.

	

	
If the scan rate is e.g. 10000ms it makes no sense to set a 1 sec log rate as data is logged only when new data is ready.

13.1.2. Delimiters

As delimiter you can use one of following options:

	Fixed width
	
Means that the values are organized in columns.

	Comma
	
Values separated by a comma.

	Tab
	
Values separated by a tab.

13.1.3. Log if data changed only

Specify that a new log line is written only if any data is changed since last log.

13.1.4. Log Errors

Specify that errors such a timeout etc. are logged.

13.1.5. Log Date

Specify that the current date is added to the log time.

13.1.6. Use "T" as delimiter

Specify that the time and date is delimited by the letter "T" as specified in ISO 8601.

13.1.7. Log ms

Specify that milliseconds are added to the log time.

13.1.8. Log address

Specify that the Modbus Address is added to the log.

13.1.9. Start Log when ok is pressed

Specify that logging is started when the ok button is pressed. Otherwise the log setup is just stored when *mbp file is saved.

13.1.10. Start Log when *mbp is opened

Specify that logging is automatically started when a *.mbp file is opened.

13.1.11. Flush to file immediately

This ensures that log lines are not cashed in the file system but physically written immediately.

13.1.12. Append

Specify that logs are appended to the selected file. Otherwise a new file is created.

13.1.13. New log file at midnight

Close the current log file and start a new file at midnight. A time stamp is added to your filename.

13.1.14. Header information

	
Insert header: Information is inserted in the top of the log file.

	
Name cells in top row: Insert names.

	
Poll definition: Insert ID, Function etc.

	
Name: Insert a name of your log.

Example of a text file with fixed width:

22:28:13 <40001> 17395 0 0 0 0 0 0 0 0
22:28:14 <40001> 17396 1 0 0 0 0 0 0 0
22:28:15 <40001> 17394 1 0 0 2 55 0 0 0
22:28:16 <40001> 13350 1 0 0 4 0 0 0 0

You can import the data in an Excel spreadsheet.

13.2. Microsoft Excel

This feature requires that Microsoft Excel is installed. Excel 2003 log is limited to 65535 logs as this is the max number of rows in an Excel sheet. Excel 2007 or newer is limited to 1,048,576 rows. Each Modbus Window logs to its individual Excel sheet.

Select Excel Log from the setup menu or use shortcut keys: Alt+X

Do not touch the Excel sheet while logging as this will interrupt the logging.

[image: Modbus Excel logging]

13.2.1. Log Rate

	
Each read: Write a logline for all Modbus requests. Log frequency as scan rate.

	
Select: Specify the log rate in seconds. Log is independent of scan rate.

Remark: If the scan rate is e.g. 10000ms it makes no sense to set a 1 sec log rate as data is logged only when new data is ready.

	
Stop after: Specify the number of log lines. Note that Excel 2003 is limited to 65,536 rows and Excel 2007 1,048,576 rows.

13.2.2. Header information

	
Insert header: Information is inserted in the top most 3 lines in the Excel sheet.

	
Name cells in top row: Insert names in row 3.

	
Poll definition: Insert ID, Function etc. in row 2.

	
Name: Insert a log name in row 1.

[image: Modbus Excel logging example]

Excel log with header information.

14. Communication traffic

Select the menu Display→Communication to show the traffic on the serial line or Ethernet cable. Use the stop button to temporary stop the update for inspection.

Use the copy button to copy the selected line to the clipboard.

[image: Modbus Communication Traffic]

	

	
This window shows only data sent and received by Modbus Poll. You can’t use it as a data sniffer.

	

	
Leave this window open while doing other commands.

15. OLE/Automation

Automation (formerly known as OLE Automation) makes it possible for one application to manipulate objects implemented in another application.

An Automation client is an application that can manipulate exposed objects belonging to another application. This is also called an Automation controller.

An Automation server is an application that exposes programmable objects to other applications. Modbus Poll is an automation server.

That means you can use any program that supports VBA (Visual Basic for Applications) such as Visual Basic, Excel etc. to interpret and show the modbus data according to your specific requirements.

15.1. Excel example

You should display the Developer tab or run in developer mode when you want to write macros.

15.1.1. Excel 2007

[image: Excel developer tab]

	
Click the Microsoft office button and then click Excel options.

	
Click popular and then select the show Developers tab in the ribbon check box.

Note the ribbon is part of the Microsoft fluent user interface.

15.1.2. Excel 2010, 2016

	
Click on the file tab.

	
Click options. Excel Options window will open.

	
On the left pane click Customize Ribbon.

	
On the right pane, under Main Tabs, check the Developer check box.

	
Click OK. The Developer tab should now show in the ribbon (right most tab).

15.1.3. Excel sample code

This example opens two windows. One reading registers and another reading Coils.

Modbus Poll is hidden but you can show it by uncommenting the "ShowWindow" line. This will show one of the windows.

An example is also included with the Modbus Poll installation.

Start → All Programs → Modbus Poll → Excel Example

Excel VBA Example

Public doc1 As Object
Public doc2 As Object
Public app As Object
Dim res As Integer
Dim n As Integer

Private Sub StartModbusPoll_Click()
 Set app = CreateObject("Mbpoll.Application")
 Set doc1 = CreateObject("Mbpoll.Document")
 Set doc2 = CreateObject("Mbpoll.Document")
' Read 10 Holding Registers every 1000ms
 res = doc1.ReadHoldingRegisters(1, 0, 10, 1000)
' Read 10 Coil Status every 1000ms
 res = doc2.ReadCoils(1, 0, 10, 1000)
' doc1.ShowWindow()
 app.Connection = 1 ' Modbus TCP/IP
 app.IPAddress = "127.0.0.1" ' local host
 app.ServerPort = 502
 app.ConnectTimeout = 1000
 res = app.OpenConnection()
End Sub

Private Sub Read_Click()
 Cells(5, 7) = doc1.ReadResult() 'Show results for the requests
 Cells(6, 7) = doc2.ReadResult()

 For n = 0 To 9
 Cells(5 + n, 2) = doc1.SRegisters(n)
 Next n

 For n = 0 To 9
 Cells(18 + n, 2) = doc2.Coils(n)
 Next n
End Sub

15.2. Python example

This Python example opens a window and set all possible data formats.

Python Example

import win32com.client as win32

SIGNED = 0
UNSIGNED = 1
HEX = 2
BINARY = 3
FLOAT_LE_BS = 4
FLOAT_BE = 5
DOUBLE_LE_BS = 6
DOUBLE_BE = 7
S32_LE_BS = 8
S32_BE = 9
FLOAT_LE = 10
FLOAT_BE_BS = 11
DOUBLE_LE = 12
DOUBLE_BE_BS = 13
S32_LE = 14
S32_BE_BS = 15

U32_BE = 17
U32_LE_BS = 18
U32_BE_BS = 19
U32_LE = 20

S64_BE = 21
S64_LE_BS = 22
S64_BE_BS = 23
S64_LE = 24

U64_BE = 25
U64_LE_BS = 26
U64_BE_BS = 27
U64_LE = 28

#Endianness
BE = 0
LE = 3
BE_BS = 2
LE_BS = 1

App = win32.Dispatch('Mbpoll.Application')

App.Connection = 1
App.IPAddress = "127.0.0.1"

App.ServerPort = 502
App.OpenConnection

#Create a Modbus display window called Win1
Win1 = win32.Dispatch("Mbpoll.Document")

Read 100 holding registers from slave ID 1, address 0 (40001) every 1000ms
Win1.ReadHoldingRegisters(1, 0, 100, 1000)
Show the Modbus window
Win1.ShowWindow()
Show 20 rows
Win1.Rows(1)

Disable refresh for speed
Win1.EnableRefresh = False

Set all different formats
This sets how the value is displayed
Win1.SetFormat(0, SIGNED)
Win1.SetFormat(1, UNSIGNED)
Win1.SetFormat(2, HEX)
Win1.SetFormat(3, BINARY)

Win1.SetFormat(4, S32_BE)
Win1.SetFormat(6, S32_LE)
Win1.SetFormat(8, S32_BE_BS)
Win1.SetFormat(10, S32_LE_BS)

Win1.SetFormat(12, U32_BE)
Win1.SetFormat(14, U32_LE)
Win1.SetFormat(16, U32_BE_BS)
Win1.SetFormat(18, U32_LE_BS)

Win1.SetFormat(20, S64_BE)
Win1.SetFormat(24, S64_LE)
Win1.SetFormat(28, S64_BE_BS)
Win1.SetFormat(32, S64_LE_BS)

Win1.SetFormat(40, U64_BE)
Win1.SetFormat(44, U64_LE)
Win1.SetFormat(48, U64_BE_BS)
Win1.SetFormat(52, U64_LE_BS)

Win1.SetFormat(60, FLOAT_BE)
Win1.SetFormat(62, FLOAT_LE)
Win1.SetFormat(64, FLOAT_BE_BS)
Win1.SetFormat(66, FLOAT_LE_BS)

Win1.SetFormat(80, DOUBLE_BE)
Win1.SetFormat(84, DOUBLE_LE)
Win1.SetFormat(88, DOUBLE_BE_BS)
Win1.SetFormat(92, DOUBLE_LE_BS)

Set all Names to used format
Win1.SetName(0, "SIGNED")
Win1.SetName(1, "UNSIGNED")
Win1.SetName(2, "HEX")
Win1.SetName(3, "BINARY")

Win1.SetName(4, "S32_BE")
Win1.SetName(6, "S32_LE")
Win1.SetName(8, "S32_BE_BS")
Win1.SetName(10, "S32_LE_BS")

Win1.SetName(12, "U32_BE")
Win1.SetName(14, "U32_LE")
Win1.SetName(16, "U32_BE_BS")
Win1.SetName(18, "U32_LE_BS")

Win1.SetName(20, "S64_BE")
Win1.SetName(24, "S64_LE")
Win1.SetName(28, "S64_BE_BS")
Win1.SetName(32, "S64_LE_BS")

Win1.SetName(40, "U64_BE")
Win1.SetName(44, "U64_LE")
Win1.SetName(48, "U64_BE_BS")
Win1.SetName(52, "U64_LE_BS")

Win1.SetName(60, "FLOAT_BE")
Win1.SetName(62, "FLOAT_LE")
Win1.SetName(64, "FLOAT_BE_BS")
Win1.SetName(66, "FLOAT_LE_BS")

Win1.SetName(80, "DOUBLE_BE")
Win1.SetName(84, "DOUBLE_LE")
Win1.SetName(88, "DOUBLE_BE_BS")
Win1.SetName(92, "DOUBLE_LE_BS")

Refresh
Win1.EnableRefresh = True

Win1.ResizeAllColumns ()
Win1.ResizeWindow()

result = Win1.Save("C:\\Users\\UserName\\Desktop\\testfile.mbp")
print (result)

print (Win1.GetName(1))

_ = input("Press ENTER to quit:")

15.3. Connection Functions/Properties

The following properties and functions do the same as you setup in the connection dialog (F3).

15.3.1. Connection

Connection selects the desired connection. A serial port or one of the Ethernet connections can be selected.

Property Connection as Integer

	Valid values
	
0 = Serial port

1 = Modbus TCP/IP

2 = Modbus UDP/IP

3 = Modbus ASCII/RTU over TCP/IP

4 = Modbus ASCII/RTU over UDP/IP

Example

Connection = 0

15.3.2. BaudRate

Applicable only for Connection = 0

Property BaudRate as Long

	Valid values
	
300

600

1200

2400

4800

9600 (Default)

14400

19200

38400

56000

57600

115200

128000

153600

230400

256000

460800

921600

Example

BaudRate = 9600

15.3.3. DataBits

Applicable only for Connection = 0

Property DataBits as Integer

	Valid values
	
7

8 (Default)

Example

DataBits = 8

15.3.4. Parity

Applicable only for Connection = 0

Property Parity as Integer

	Valid values
	
0 = None

1 = Odd

2 = Even (Default)

Example

Parity = 2

15.3.5. StopBits

Applicable only for Connection = 0

Property StopBits as Integer

	Valid values
	
1 (Default)

2

Example

StopBits = 1

15.3.6. SerialPort

Applicable only for Connection = 0

Property SerialPort as Integer

	Valid values
	
1…255

Default value = 1

Example

SerialPort = 1

15.3.7. Mode

Applicable only for Connection = 0

Property Mode as Integer

	Valid values
	
0 = RTU Mode

1 = ASCII Mode

Example

Mode = 1

15.3.8. RemoveEcho

Applicable only for Connection = 0

If your device or RS232/RS485 converter echoes the chars just sent.

Property RemoveEcho as Integer

	Valid values
	
0 (Default)

1 (Remove echoes)

Example

RemoveEcho = 1

15.3.9. ResponseTimeout

The ResponseTimeout specifies the length of time in ms that Modbus Poll should wait for a response from a slave device before giving up.

Property ResponseTimeout as Integer

	Valid values
	
50…100000

Default value = 1000

Example

ResponseTimeout = 1000

15.3.10. DelayBetweenPolls

Property DelayBetweenPolls as Integer

	Valid values
	
0…1000

Default value = 20

Example

DelayBetweenPolls = 20

15.3.11. ServerPort

Applicable only for Connection = 1…4

Property ServerPort as Long

	Valid values
	
0…65535

Default value = 502

Example

ServerPort = 502

15.3.12. ConnectTimeout

The ConnectTimeout specifies the length of time that Modbus Poll should wait for a TCP/IP connection to succeed.

Applicable only for Connection = 1…4

Property ConnectTimeout as Integer

	Valid values
	
100…30000ms

Default value = 1000ms

Example

ConnectTimeout = 1000

15.3.13. IPVersion

Applicable only for Connection = 1…4

Property IPVersion as Integer

	Valid values
	
4 = IP Version 4 (Default)

6 = IP Version 6

Example

IPVersion = 4

15.3.14. OpenConnection

Opens the connection selected with the Connection property.

Function OpenConnection() As Integer

	Parameters
	
This function has no parameters.

	Return value
	
For error 3-5: Please check if you have the latest serial port driver.

	Error	Description
	0
	SUCCESS

	1
	Serial Port not available

	3
	Serial port. Not possible to get current settings from the port driver.

	4
	Serial port. Serial port driver did not accept port settings.

	5
	Serial port. Serial port driver did not accept timeout settings.

	12
	TCP/UDP Connection failed. WSA start up

	13
	TCP/UDP Connection failed. Connect error

	14
	TCP/UDP Connection failed. Timeout

	15
	TCP/UDP Connection failed. IOCTL

	17
	TCP/UDP Connection failed. Socket error

	21
	TCP/UDP Connection failed. Address information

	255
	Connection already open

Excel example how to open a Modbus TCP/IP connection

Public app As Object
Dim res As Integer
' Create an object to Modbus Poll
Set app = CreateObject("Mbpoll.Application")
app.Connection = 1 ' Select Modbus TCP/IP
app.IPVersion = 4
app.IPAddress = "192.168.1.27"
app.ServerPort = 502
app.ConnectTimeout = 1000
app.ResponseTimeout = 1000
res = app.OpenConnection()

Python example how to setup a serial connection

import win32com.client as win32

App = win32.Dispatch('Mbpoll.Application')

App.Connection = 0 # Serial connection
App.SerialPort = 3 # Com port 3
App.BaudRate = 9600 # 9600 baud
App.Parity = 0 # None parity
App.Mode = 0 # RTU mode
App.ResponseTimeout = 1000 # Wait 1000ms until give up
App.DelayBetweenPolls = 20 # Ensure minimum 20 ms gap until next request
App.OpenConnection

#Create a Modbus display window called Win1
Win1 = win32.Dispatch("Mbpoll.Document")

Read 10 holding registers from slave ID 1, address 0 (40001) every 1000ms
Win1.ReadHoldingRegisters(1, 0, 10, 1000)
Show the Modbus window
Win1.ShowWindow()
Show 10 rows
Win1.Rows(0)

Disable refresh for speed
Win1.EnableRefresh = False

Set the name of the registers
Win1.SetName(0, "Register 0")

Set the value to write
Win1.EnableRefresh = True

Win1.ResizeAllColumns ()
Win1.ResizeWindow()

_ = input("Press ENTER to quit:")

15.3.15. CloseConnection

Function CloseConnection() As Integer

	Parameters
	
This function has no parameters.

	Return value
	
Zero if success. Nonzero value if failed.

15.3.16. ShowCommunicationTraffic

Shows the communication traffic window.

Function ShowCommunicationTraffic()

	Parameters
	
This function has no parameters.

	Return value
	
None

15.3.17. CloseCommunicationTraffic

Closes the communication traffic window if shown.

Function CloseCommunicationTraffic()

	Parameters
	
This function has no parameters.

	Return value
	
None

15.4. Read Functions

The following functions do the same as you setup in the read/write definition dialog (F8).
Read functions are associated with a Modbus Poll document. (The window with data)

Example

' First a Modbus Poll document is needed.
Public doc As Object

Set doc = CreateObject("Mbpoll.Document")
res = doc.ReadCoils(1, 0, 100, 1000) ' Read 100 coils every 1000ms

	

	
You must create a Read before you can use properties to get data.

15.4.1. ReadCoils

Modbus function code 01

Function ReadCoils(SlaveID As Integer, Address As Long, Quantity As Integer, ScanRate As Long) As Integer

	Parameters
	
SlaveID: The slave address 1 to 255

Address: The data address (Base 0)

Quantity: The number of data. 1 to 2000

ScanRate: 0 to 3600000ms

	Return value
	
True if success. False if not success

15.4.2. ReadDiscreteInputs

Modbus function code 02

Function ReadDiscreteInputs(SlaveID As Integer, Address As Long, Quantity As Integer, ScanRate As Long) As Integer

	Parameters
	
SlaveID: The slave address 1 to 255

Address: The data address (Base 0)

Quantity: The number of data. 1 to 2000

ScanRate: 0 to 3600000ms

	Return value
	
True if success. False if not success

15.4.3. ReadHoldingRegisters

Modbus function code 03

Function ReadHoldingRegisters(SlaveID As Integer, Address As Long, Quantity As Integer, ScanRate As Long) As Integer

	Parameters
	
SlaveID: The slave address 1 to 255

Address: The data address (Base 0)

Quantity: The number of data. 1 to 125

ScanRate: 0 to 3600000ms

	Return value
	
True if success. False if not success

15.4.4. ReadInputRegisters

Modbus function code 04

Function ReadInputRegisters(SlaveID As Integer, Address As Long, Quantity As Integer, ScanRate As Long) As Integer

	Parameters
	
SlaveID: The slave address 1 to 255

Address: The data address (Base 0)

Quantity: The number of data. 1 to 125

ScanRate: 0 to 3600000ms

	Return value
	
True if success. False if not success

15.5. Automation Write Functions

The write functions write the values stored in the array filled by the properties. The below Write function do not create a data window.
To create a data window use the Win functions e.g. WriteMultipleRegistersWin.

15.5.1. WriteSingleCoil

Modbus function code 05.

Writes the first coil stored in the write array.

Function WriteSingleCoil(SlaveID As Integer, Address As Long) As Integer

	Parameters
	
SlaveID: The slave address 0 to 255

Address: The data address (Base 0)

	Return value
	
True if the write array is ready and the data is sent. False if the array is empty or error in the parameters.

The controlling application is responsible for verifying the write operation by reading back the value written.

15.5.2. WriteSingleRegister

Modbus function code 06.

Writes the first register stored in the write array.

Function WriteSingleRegister (SlaveID As Integer, Address As Long) As Integer

	Parameters
	
SlaveID: The slave address 0 to 255

Address: The data address (Base 0)

	Return value
	
True if the write array is ready and the data is sent. False if the array is empty or error in the parameters.

The controlling application is responsible for verifying the write operation by reading back the value written.

15.5.3. WriteMultipleCoils

Modbus function code 15.

Write the coils stored in the write array.

Function WriteMultipleCoils(SlaveID As Integer, Address As Long, Quantity As Integer) As Integer

	Return value
	
True if the write array is ready and the data is sent. False if the array is empty or error in the parameters.

The controlling application is responsible for verifying the write operation by reading back the values written.

	Parameters
	
SlaveID: The slave address 0 to 255

Address: The data address (Base 0)

Quantity The number of data. 1 to 1968

15.5.4. WriteMultipleRegisters

Modbus function code 16.

Write the registers stored in the write array.

Function WriteMultipleRegisters(SlaveID As Integer, Address As Long, Quantity As Integer) As Integer

	Parameters
	
SlaveID: The slave address 0 to 255

Address: The data address (Base 0)

Quantity: The number of data. 1 to 123

	Return value
	
True if the write array is ready and the data is sent. False if the array is empty or error in the parameters.

The controlling application is responsible for verifying the write operation by reading back the value written.

15.5.5. Python example

Python example how to create a window that read 10 registers from address 0 (40001) and then write 5 registers.

Python example

import sys
import time
import win32com.client as win32

App = win32.Dispatch('Mbpoll.Application')

App.Connection = 1 # TCP/IP connection
App.IPAddress = "127.0.0.1"

App.ResponseTimeout = 1000 # Wait 1000ms until give up
App.DelayBetweenPolls = 20 # Ensure minimum 20 ms gap until next request
App.ConnectTimeout = 500 # Wait 500ms until give up

App.ServerPort = 502
result = App.OpenConnection

if result != 0:
 print("Connection failed. Error: ", result)
 sys.exit()

#Create a Modbus display window called Win1
Win1 = win32.Dispatch("Mbpoll.Document")

Read 10 holding registers from slave ID 1, address 0 (40001) every 1000ms
Win1.ReadHoldingRegisters(1, 0, 10, 1000)
Show the Modbus window
Win1.ShowWindow()
Show 10 rows
Win1.Rows(0)
Resize the window to fit to the grid
Win1.ResizeWindow()

time.sleep(1.0) # Wait until read is done

if Win1.ReadResult == 0: # Check read result
 print("Modbus register 0 (40001) = ", Win1.SRegisters(0))
else:
 print("Read failed error: = ", Win1.ReadResult)

print ("Tx count = %d, Rx count = %d" % (Win1.GetTxCount, Win1.GetRxCount))

Prepare the internal array in Modbus Poll with data to write
Win1.SRegisters(0, 1) # Note that parameter 1 is not a
Win1.SRegisters(1, 10) # Modbus address but an index to the array
Win1.SRegisters(2, 100)
Win1.SRegisters(3, 1000)
Win1.SRegisters(4, 10000)
Write the registers. This function do not create a window in Modbus Poll
Use the function <<WriteMultipleRegistersWin>> to create a data window
Win1.WriteMultipleRegisters (1, 0, 5)

_ = input("Wait for write Press ENTER:")

if Win1.WriteResult == 0: # Check write result
 print("Modbus write success")
else:
 print("Write failed error: = ", WriteResult)

_ = input("Press ENTER to quit:")

15.6. Various Functions

Various functions are associated with a Modbus Poll document. (The window with data)

15.6.1. ShowWindow

As default Modbus document windows are hidden. The ShowWindow function makes Modbus Poll visible and shows the document with data content.

Function ShowWindow()

	Parameters
	
This function has no parameters.

	Return value
	
None

15.6.2. GetTxCount

Gets the number of requests.

Function GetTxCount() As Long

	Parameters
	
This function has no parameters.

	Return value
	
The number of requests.

15.6.3. GetRxCount

Gets the number of response.

Function GetRxCount() As Long

	Parameters
	
This function has no parameters.

	Return value
	
The number of response.

15.6.4. GetName

Gets the name of a value.

Function GetName(Index As Integer) As String

	Parameters
	
Index: Index 0 corresponds to the first Modbus address.

	Return value
	
The name.

15.6.5. SetName

Changes the name of a value.
Function SetName(Index As Integer, Name As String)

	Parameters
	
Index: Index 0 corresponds to the first Modbus address.

Name: The name of the value cell.

	Return value
	
None

15.6.6. FormatAll

Format all value cells with the selected format.

Function FormatAll(Format As Integer)

	Parameters
	
Format: The format of the value cell.

	Return value
	
None

15.6.7. GetFormat

Gets the display format of the Modbus value.

Function GetFormat(Index As Integer) As Integer

	Parameters
	
Index: Index 0 corresponds to the first Modbus address.

	Return value

	ID	Format
	0
	Signed

	1
	Unsigned

	2
	Hex

	3
	Binary

	4
	Float little-endian byte swap

	5
	Float big-endian

	6
	Double little-endian byte swap

	7
	Double big-endian

	8
	32-bit Signed little-endian byte swap

	9
	32-bit Signed big-endian

	10
	Float little-endian

	11
	Float big-endian byte swap

	12
	Double little-endian

	13
	Double big-endian byte swap

	14
	32-bit Signed little-endian

	15
	32-bit Signed big-endian byte swap

	17
	32-bit Unsigned big-endian

	18
	32-bit Unsigned little-endian byte swap

	19
	32-bit Unsigned big-endian byte swap

	20
	32-bit Unsigned little-endian

	21
	64-bit Signed big-endian

	22
	64-bit Signed little-endian byte swap

	23
	64-bit Signed big-endian byte swap

	24
	64-bit Signed little-endian

	25
	64-bit Unsigned big-endian

	26
	64-bit Unsigned little-endian byte swap

	27
	64-bit Unsigned big-endian byte swap

	28
	64-bit Unsigned little-endian

	

	
This setting is only for display. You still need to use byteOrder to get the correct endianness when using Get/Set value functions.

15.6.8. SetFormat

Change the display format of the Modbus values. See Format values above.

Function SetFormat(Index As Integer, Format As Integer)

	Parameters
	
Index: Index 0 corresponds to the first Modbus address.

Format: The format of the value cell.

	Return value
	
None

15.6.9. ResizeWindow

Resize an opened window to fit the grid.

Function ResizeWindow()

	Parameters
	
This function has no parameters.

	Return value
	
None

15.6.10. ResizeAllColumns

Resize all columns to fit the values inside the cells.

Function ResizeAllColumns()

	Parameters
	
This function has no parameters.

	Return value
	
None

15.6.11. Rows

Specify the number of rows in the grid.

Function Rows(NumberRows)

	Parameters
	
NumberRows: Number of rows in the grid.

	ID	Description
	0
	10 Rows (Default)

	1
	20 Rows

	2
	50 Rows

	3
	100 Rows

	4
	Fit to quantity

	Return value
	
None

15.6.12. EnableRefresh

Set to False while setting a lot of cell data such as names, values, and formatting. Set True when done.

Property EnableRefresh As Boolean

Python Example

Disable refresh for speed
Win1.EnableRefresh = False
#... Some cell data settings
Refesh
Win1.EnableRefresh = True

15.6.13. ReadWriteDisabled

Used to temporary enable or disable the communication for this window.

Property ReadWriteDisabled As Boolean

15.6.14. ReadResult

Use this property to check if communication established with Read is running successful.

Property ReadResult As Integer

	Parameters
	
This function has no parameters.

	Return value

	Error	Description
	0
	SUCCESS

	1
	TIMEOUT ERROR

	2
	CRC ERROR

	3
	RESPONSE ERROR (The response was not the expected slave id, function or address)

	4
	WRITE ERROR

	5
	READ ERROR

	6
	PORT NOT OPEN ERROR

	10
	DATA UNINITIALIZED

	11
	INSUFFICIENT BYTES RECEIVED

	16
	BYTE COUNT ERROR

	19
	TRANSACTION ID ERROR

	81h
	ILLEGAL FUNCTION

	82h
	ILLEGAL DATA ADDRESS

	83h
	ILLEGAL DATA VALUE

	84h
	SERVER DEVICE FAILURE

	85h
	ACKNOWLEDGE

	86h
	SERVER DEVICE BUSY

	87h
	NAK-NEGATIVE ACKNOWLEDGMENT

	8Ah
	GATEWAY PATH UNAVAILABLE

	8Bh
	GATEWAY TARGET DEVICE FAILED TO RESPOND

15.6.15. WriteResult

Use this function to check if a write was successful.

The value is DATA_UNINITIALIZED until the result from the slave is available. See ReadResult for a list of possible values.

Property WriteResult As Integer

	Return value
	
Return a write result as an integer.

15.6.16. Save

Save the current Window.
Function Save(PathName As String) As Boolean

	Parameters
	
PathName: The fully qualified path to which the file should be saved.

	Return value
	
Boolean

Example

' First a Modbus Poll document is needed.
Public doc As Object

Set doc = CreateObject("Mbpoll.Document")
res = doc.ReadCoils(1, 0, 100, 1000) ' Read 100 coils every 1000ms
res = doc.Save("C:\\Users\\UserName\\Desktop\\testfile.mbp")

15.7. Automation data properties

The below properties are used to set or get values in the internal write/read arrays in Modbus Poll.
The Index used is not a Modbus Address. The Index always counts from 0 no matter of the address used.
The data properties are associated with a Modbus Poll document. (The window with data)

There are 2 version of each data properties:

	
One with no postfix such as SRegisters which is used to set or get a value from the internal write/read array.

	
One with Win as postfix such as SRegistersWin which is used to set or get a value direct from the data window. This is used when
the data window is used for a Write function e.g. WriteMultipleRegistersWin.

Example 1:

' doc is assumed created first. See Excel example.
' Writes 1 to index 0 in the data array used for the Write function later
doc.SRegisters(0) = 1
doc.SRegisters(1) = 10
doc.SRegisters(2) = 1234
' Write 3 registers stored in Modbus Poll internal array
' to Modbus address 100 (40101)
' A window is not created
res = doc.WriteMultipleRegisters(1, 100, 3)
' The above example do not create a data window but just make a single Modbus write.

Example 2 with floating point values:

Write 3 floating point values.

' doc is assumed created first. See Excel example.
doc.Floats(0) = 1.3
doc.Floats(2) = 10.5
doc.Floats(4) = 1234.12
' Write the 6 register stored in Modbus Poll
res = doc. WriteMultipleRegisters(1, 0, 6)
' 6 Registers are written as a floating point value is 32 bit wide.

Example 3:

Create a window that writes 3 registers.

' doc is assumed created first. See Excel example.
' A window is created that writes the content every 1000ms
res = doc.WriteMultipleRegistersWin(1, 100, 3, 1000)
' Writes 1 to the first cell in the data window
doc.SRegistersWin(0) = 1
doc.SRegistersWin(1) = 10
doc.SRegistersWin(2) = 1234
' Now the 3 registers are written to slave id 1 address 100 every 1000ms

15.7.1. Coils, CoilsWin

Property Coils(Index As Integer) As Integer

	Description
	
Sets a coil in the write array structure or return a coil from the read array.

	Syntax
	
Coils(Index) [=newvalue]

15.7.2. SRegisters, SRegistersWin

Property SRegisters(Index As Integer) As Integer

	Description
	
Sets a register in the write array structure or return a register from the read array.

	Syntax
	
SRegisters(Index) [=newvalue]

15.7.3. URegisters, URegistersWin

Property URegisters(Index As Integer) As Long

	Description
	
Sets a register in the write array structure or return a register from the read array.

	Syntax
	
URegisters(Index) [=newvalue]

15.7.4. Ints_32, Ints_32Win

Property Ints_32(Index As Integer) As Double

	Description
	
Sets a 32-bit integer in the write array structure or return an integer from the read array.

	Syntax
	
Ints_32(Index) [=newvalue]

15.7.5. UInts_32, UInts_32Win

Property UInts_32(Index As Integer) As Double

	Description
	
Sets a 32-bit unsigned integer in the write array structure or return an unsigned integer from the read array.

	Syntax
	
UInts_32(Index) [=newvalue]

15.7.6. Ints_64, Ints_64Win

Property Ints_64(Index As Integer) As Double

	Description
	
Sets a 64-bit integer in the write array structure or return an integer from the read array.

	Syntax
	
Ints_64(Index) [=newvalue]

15.7.7. UInts_64, UInts_64Win

Property UInts_64(Index As Integer) As Double

	Description
	
Sets a 64-bit unsigned integer in the write array structure or return an unsigned integer from the read array.

	Syntax
	
UInts_64(Index) [=newvalue]

15.7.8. Floats, FloatsWin

Property Floats(Index As Integer) As Single

	Description
	
Sets a float in the write array structure or returns a float from the read array.

	Syntax
	
Floats(Index) [=newvalue]

15.7.9. Doubles, DoublesWin

Property Doubles(Index As Integer) As Double

	Description
	
Sets a double in the write array structure or return a double from the read array.

	Syntax
	
Doubles(Index) [=newvalue]

15.7.10. ByteOrder

Property ByteOrder As Integer

	Description
	
Sets the byte order used by Ints_32, UInts_32, Ints_64, UInts_64, Floats and Doubles properties.

The Win versions do not use this Property ByteOrder.

	ID	Endianness
	0
	Big-endian (Default)

	1
	Little-endian byte swap

	2
	Big-endian byte swap

	3
	Little-endian

Example for Ints_32:

Byte Order: Big-endian

The decimal number 123456789 or in hexadecimal 07 5B CD 15

Order as they come over the wire in a Modbus message: 07 5B CD 15

	Syntax
	
ByteOrder [=newvalue]

15.8. Write Functions (Create a data window)

The following functions do the same as you set up in the read/write definition dialog (F8).

The functions creates a data window and the data content in the data windows is written according to the scan rate.

15.8.1. WriteSingleCoilWin

Modbus function code 05.

Function WriteSingleCoilWin(SlaveID As Integer, Address As Long, ScanRate As Long) As Integer

	Parameters
	
SlaveID: The slave address 1 to 255

Address: The data address (Base 0)

ScanRate: 0 to 3600000ms

	Return value
	
True if success. False if not success

15.8.2. WriteSingleRegisterWin

Modbus function code 06.

Function WriteSingleRegisterWin(SlaveID As Integer, Address As Long, ScanRate As Long) As Integer

	Parameters
	
SlaveID: The slave address 1 to 255

Address: The data address (Base 0)

ScanRate: 0 to 3600000ms

	Return value
	
True if success. False if not success

Python Example how to open a window and write a single register every 1000 ms

import win32com.client as win32

SIGNED = 0

App = win32.Dispatch('Mbpoll.Application')

App.Connection = 1
App.IPAddress = "127.0.0.1"

App.ServerPort = 502
App.OpenConnection

#Create a Modbus display window called Win1
Win1 = win32.Dispatch("Mbpoll.Document")

Write 1 holding registers to slave ID 1, address 0 (40001) every 1000 ms
Win1.WriteSingleRegisterWin(1, 0, 1000)
Show the Modbus window
Win1.ShowWindow()

Fit rows to quantity
Win1.Rows(4)

Disable refresh for speed
Win1.EnableRefresh = False

This sets how the value is displayed
Win1.SetFormat(0, SIGNED)

Set the Name of the register
Win1.SetName(0, "Setting")

Set the value to write
Win1.SRegistersWin(0, 100)
Win1.EnableRefresh = True

Win1.ResizeAllColumns ()
Win1.ResizeWindow()

_ = input("Press ENTER to quit:")

15.8.3. WriteMultipleCoilsWin

Modbus function code 15.

Function WriteMultipleCoilsWin(SlaveID As Integer, Address As Long, Quantity As Integer, ScanRate As Long) As Integer

	Parameters
	
SlaveID: The slave address 1 to 255

Address: The data address (Base 0)

Quantity: The number of data. 1 to 1968

ScanRate: 0 to 3600000ms

	Return value
	
True if success. False if not success

15.8.4. WriteMultipleRegistersWin

Modbus function code 16.

Function WriteMultipleRegistersWin(SlaveID As Integer, Address As Long, Quantity As Integer, ScanRate As Long) As Integer

	Parameters
	
SlaveID: The slave address 1 to 255

Address: The data address (Base 0)

Quantity: The number of data. 1 to 123

ScanRate: 0 to 3600000ms

	Return value
	
True if success. False if not success

16. Exception and error messages

Modbus Exceptions and error messages are displayed in red text in the 2nd line in each window.

[image: Error line]

16.1. Modbus Exception Codes

Modbus exceptions are errors returned from the slave device.

	Code	Name	Meaning
	01
	Illegal Function
	The function code received in the query is not an allowable action for the server (or slave). This may be because the function code is only applicable to newer devices, and was not implemented in the unit selected. It could also indicate that the server (or slave) is in the wrong state to process a request of this type, for example because it is not configured and is being asked to return register values.

	02
	Illegal Data Address
	The data address received in the query is not an
allowable address for the server. More specifically, the combination of reference number and transfer length is
invalid. For a controller with 100 registers, the PDU addresses the first register as 0, and the last one as 99. If a request is submitted with a starting register address of 96 and a quantity of registers of 4, then this request will successfully operate (address-wise at least) on registers 96, 97, 98, 99. If a request is submitted with a starting register address of 96 and a quantity of registers of 5, then this request will fail with Exception Code 0x02 “Illegal Data Address” since it attempts to operate on registers 96, 97, 98, 99 and 100, and there is no register with address 100.

	03
	Illegal Data Value
	A value contained in the query data field is not an allowable value for the server (or slave). This indicates a fault in the structure of the remainder of a complex request, such as that the implied length is incorrect. It specifically does NOT mean that a data item submitted for storage in a register has a value outside the expectation of the application program, since the MODBUS protocol is unaware of the significance of any particular value of any particular register.

	04
	Server Device Failure
	An unrecoverable error occurred while the server (or slave) was attempting to perform the requested action.

	05
	Acknowledge
	Specialized use in conjunction with programming commands.

The server (or slave) has accepted the request and is processing it, but a long duration of time will be required to do so. This response is returned to prevent a timeout error from occurring in the client (or master). The client (or master) can next issue a Poll Program Complete message to determine if processing is completed.

	06
	Server Device Busy
	Specialized use in conjunction with programming commands.

The server (or slave) is engaged in processing a long–duration program command. The client (or master) should retransmit the message later when the server (or slave) is free.

	0A
	Gateway Path Unavailable
	Specialized use in conjunction with gateways, indicates that the gateway was unable to allocate an internal communication path from the input port to the output port for processing the request. Usually means that the gateway is misconfigured or overloaded.

	0B
	Gateway Target Device Failed to Respond
	Specialized use in conjunction with gateways, indicates that no response was obtained from the target device. Usually means that the device is not present on the network.

16.2. Modbus Poll error messages

	Error message	Meaning
	Timeout Error
	
The response is not received within the expected time.
Check the following:

	
Serial Connection

	
Serial settings such as Baud rate, parity, Data bits, Stop bits etc.

	
Modbus mode, RTU or ASCII

	
Slave ID

	
Response timeout

	
TCP/IP Connection

	
Response timeout

	
Check that Host and Port are consistent with the slave

	Response Error
	The response is not the expected one. Different slave ID.

	CRC Error
	The CRC value of the received response is not correct.

	Write Error
	
This is an error reported by the serial driver. This could happen if a USB/RS232/485 converter is used and the USB cable is unplugged. There are 4 types:

	
Break condition

	
I/O error

	
Serial connection error

	
Output buffer overflow

Write error using TCP/IP connection is normally caused by lost connection.

	Read Error
	
This is an error reported by the serial driver. There are 6 types:

	
Framing error

	
Character buffer overrun

	
Parity error

	
Input buffer overflow

	
I/O error

	
Break condition

Read error using TCP/IP connection is normally caused by lost connection.

	Insufficient bytes received
	The response is not the expected length.

	Byte count error
	The byte count in the response is not correct. Compared to the expected.

	Transaction ID error
	It is used for transaction pairing, the MODBUS server copies in the response the transaction identifier of the request.

Last updated 2024-04-02 09:27:09 +0200

